Crown-annelated 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene derivatives: a new efficient transducer in the electrochemical and spectroscopic monitoring of metal complexation

Martin R. Bryce, ${ }^{* a}$ Andrei S. Batsanov, ${ }^{a}$ Terry Finn, ${ }^{a}$ Thomas K. Hansen, ${ }^{a} \dagger$ Judith A. K. Howard, ${ }^{a}$ Marta Kamenjicki, ${ }^{b}$ Igor K. Lednev ${ }^{b}$ and Sanford A. Asher ${ }^{b}$

${ }^{\text {a }}$ Department of Chemistry, University of Durham, Durham, UK DH1 3LE. E-mail: m.r.bryce@durham.ac.uk ${ }^{b}$ Department of Chemistry, University of Pittsburgh, Pittsburgh PA 15260, USA

Received (in Liverpool, UK) 28th October 1999, Accepted 21st December 1999

$\mathrm{S}_{2} \mathrm{O}_{4}$-Crown annelated derivatives of 9,10 -bis(1,3 -dithiol-2-ylidene)-9,10-dihydroanthracene function as efficient ligands in the voltammetric and spectroscopic recognition of Na^{+}and Ag^{+}.

Redox-active ligand systems are important in the field of electrochemically-controlled uptake and release of guest metal cations. ${ }^{1}$ For large shifts of the redox potential to be observed upon metal binding the antennae [e.g. crown ether unit(s)] should be situated close to the redox-responsive centre (i.e. the transducer), thereby enhancing the intramolecular electrostatic (through-space) effect which modulates the redox signal Typical molecular ${ }^{2}$ redox species for this purpose are ferrocene, ${ }^{3}$ metal coordinated dithiolate ${ }^{4}$ and diimine, ${ }^{5}$ and tetrathiafulvalene (TTF) derivatives, ${ }^{6}$ e.g. $\mathbf{1}^{6 a, b}$ and $\mathbf{2} .^{6 d}$ For these systems cation binding induces a positive shift of the oneelectron oxidation potential $E_{1}{ }^{\mathrm{ox}}$.

Derivatives of 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene are versatile building blocks in supramolecular and materials chemistry. ${ }^{7}$ The special feature of this system is a twoelectron oxidation wave [neutral \rightarrow dication, $E_{1}{ }^{\text {ox }} c a .+0.35 \mathrm{~V} \ddagger$ (in MeCN , vs. $\mathrm{Ag} / \mathrm{AgCl}$) which is electrochemically quasireversible and chemically reversible]. ${ }^{8}$ Herein we report the first crown-annelated derivatives 5 and 8 .
Reaction of anthraquinone 3 with the new reagent 4^{9} under standard conditions ${ }^{8,10}$ gave a mixture of the bis- and monocrown annelated derivatives 5 and $\mathbf{6}$, respectively (Scheme 1). §

Scheme $1 \mathrm{i}, \mathbf{4}$, LDA, THF, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$, then addition of $\mathbf{3}$, then -78 to $20^{\circ} \mathrm{C}$.
\dagger Present address: Medicinal Chemistry Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maløv, Denmark.

Scheme $2 \mathrm{i}, \mathbf{4}, \mathrm{LDA}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$, then addition of 7, then -78 to $20^{\circ} \mathrm{C}$.

The latter was characterised by X-ray diffraction. If Reaction of 4 with $7^{8 a}$ gave the bis(1,3-dithiole) system 8 (Scheme 2),
An X-ray crystallographic study $\|$ of $8 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed a motif of saddle-shaped molecules (Fig. 1) engulfing each other's dimethyldithiole ends. The anthracenediylidene moiety is folded along the $\mathrm{C}(9) \cdots \mathrm{C}(10)$ vector, the two benzene rings forming a dihedral angle of $39^{\circ}\left(c f .21^{\circ}\right.$ in $\mathbf{6}$). The dithiole rings are folded along the $S(1) \cdots S(2)$ and $S(3) \cdots S(4)$ vectors by 15.5 and 8.7°, and the $\mathrm{S}(1) \mathrm{C}(16) \mathrm{C}(17) \mathrm{S}(2)$ and $\mathrm{S}(3) \mathrm{C}(19) \mathrm{C}(20) \mathrm{S}(4)$ planes form an acute dihedral angle of 81°.
The cation binding properties of $\mathbf{5}$ were assessed by ${ }^{1} \mathrm{H}$ NMR titration studies in CDCl_{3} at $50^{\circ} \mathrm{C}$ (at $20^{\circ} \mathrm{C}$ a precipitate formed on addition of metal salts). In the presence of Na^{+}and Ag^{+}the resonances due to the $-\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ - protons of the crown [$\left.\left(\mathrm{SCH}_{2}\right) \delta 3.05 ;\left(\mathrm{OCH}_{2}\right) \delta 3.66\right]$ shifted downfield by ca. 0.07 ppm in the presence of 10 equiv. of Na^{+}and Ag^{+}, while the anthracenediylidene resonances were unaffected, confirming that cation binding occurs at the crown site. Li^{+}and K^{+}cations had essentially no effect on the ${ }^{1} \mathrm{H}$ NMR spectrum. UV-VIS absorption spectra for $\mathbf{5}$ in MeCN in the presence of both Na^{+} and Ag^{+}(as the perchlorate salts) resulted in a specific change in the spectra. No isosbestic points were observed, indicating that, most probably, both 1:1 and 1:2 complexes [i.e. 5M+ and $\mathbf{5}\left(\mathrm{M}^{+}\right)_{2}$] form simultaneously, and the absorption spectra of these species are different. Such behaviour is known for other bis(crown) chromoionophores. ${ }^{11}$ Fig. 2 shows the changes in the spectrun of $\mathbf{5}$ upon complexation with Ag^{+}. The stability constants for the formation of $\mathbf{5 M}{ }^{+}$and $\mathbf{5}\left(\mathrm{M}^{+}\right)_{2}$ were estimated to be $\log K_{1} c a .3 .4$ and $\log K_{2} c a .5 .5$, respectively
Cyclic voltammetry (CV) and square wave voltammetry (SQV) showed that 5 and $\mathbf{8}$ display a two-electron oxidation

Fig. 1 Molecular structure of 8. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50% displacement ellipsoids).

Fig. 2 Absorption spectra of $5\left(2 \times 10^{-5} \mathrm{M}\right)$ in $\mathrm{MeCN}(1 \mathrm{~cm}$ cell) containing AgClO_{4} at concentrations of (a) $0,(b) 0.5$, (c) 8.0 and (d) 30 mM . Inset: absorption at 445 nm as a function of Ag salt concentration fitted with eqn. (1), where A_{0}, A_{1} and A are the absorbances of the free ligand L and

$$
\begin{equation*}
A=A_{0}+\frac{K_{1} M_{0}\left(A_{1}-A_{0}\right)}{1+K_{1} M_{0}+K_{2} M_{0}^{2}}+\frac{K_{2} M_{0}^{2}\left(A_{\infty}-A_{0}\right)}{1+K_{1} M_{0}+K_{2} M_{0}^{2}} \tag{1}
\end{equation*}
$$

complexes LM^{+}and $\mathrm{L}\left(\mathrm{M}^{+}\right)_{2}$, respectively; K_{1} and K_{2} are equilibrium constants for complex formation.
wave: $E_{1}{ }^{\mathrm{ox}}+0.405 \mathrm{~V}(\mathbf{5})$ and $E_{1}{ }^{\mathrm{ox}}+0.345 \mathrm{~V}(\mathbf{8})$. A second reversible one-electron wave, ascribed to oxidation of the anthracene system ${ }^{8 b, c}$ (i.e. radical trication formation) was seen at $E_{2}{ }^{\text {ox }} 1.62 \mathrm{~V}$ for both compounds [CV data were recorded $v s$. $\left.\mathrm{Ag} / \mathrm{AgCl}, \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{ClO}_{4}^{-}(0.1 \mathrm{M}), \mathrm{MeCN}, 20^{\circ} \mathrm{C}, 100 \mathrm{mV} \mathrm{s}{ }^{-1}\right]$. The progressive addition of aliquots of metal triflate salts resulted in a positive shift of $E_{1}{ }^{\text {ox }}$ (and a similar positive shift of the coupled reductive peak on the cathodic scan), while $E_{2}{ }^{\text {ox }}$ remained unchanged, thereby acting as an internal reference. This is consistent with expulsion of the metal cation from the ionophore prior to the second oxidation wave. The maximum positive shifts $\left(\Delta E_{1}{ }^{\text {ox }}\right)$ are as follows: $\mathrm{Li}^{+}(15-20 \mathrm{mV}), \mathrm{Na}^{+}$ $(100 \mathrm{mV}), \mathrm{K}^{+}(15-20 \mathrm{mV})$ and $\mathrm{Ag}^{+}(115 \mathrm{mV})$. The values of $\Delta E_{1}{ }^{\text {ox }}$ are essentially the same for the mono- and bis-crown systems $\mathbf{8}$ and $\mathbf{5}$, respectively, whereas in the TTF series, e.g. 1, a larger shift is observed for bis-crowns. This is likely to be a consequence of intramolecular steric interactions between the crown rings of 5, and/or sandwich complexation between two crowns, favoured by the rigid saddle conformation. A comparison with related $\mathrm{S}_{2} \mathrm{O}_{4}$-crowned TTF systems ${ }^{6}$ shows two important advantages of systems 5 and $\mathbf{8}$: (i) the positive shifts for Na^{+}and Ag^{+}are significantly larger, and (ii) the system is significantly more sensitive, with saturation being achieved with < 10 equiv. of cation (Fig. 3) ($c f .200$ equiv. for $1^{6 a}$).

Fig. 3 Shift of E_{1} ox in the CV of $\mathbf{5}$ with added equivalents of $\operatorname{AgOTf}(\mathbf{\Delta})$ and KOTf (). Data were obtained in $0.2 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NBF}_{4}, \mathrm{MeCN}$, Pt disk electrode, $50 \mathrm{mV} \mathrm{s}{ }^{-1}, \mathrm{Ag} / \mathrm{AgCl}$ reference electrode, referenced $v s$. decamethylferrocene.

We suggest that these results are a consequence of the unique combination of structural and redox properties of the 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene transducer unit: (i) the saddle-shape folding of the anthracenediylidene system places the crown ring(s) of $\mathbf{5}$ and $\mathbf{8}$ in close proximity to the redox-responsive moiety, and there is a marked conformational change upon oxidation, ${ }^{7 a}$ and (ii) the $E_{1}{ }^{\text {ox }}$ redox process which is monitored is a two-electron oxidation (cf. the one-electron wave of TTF, ferrocene etc.) thereby enhancing the electrostatic repulsion with the bound metal cation(s) leading to an increase in $\Delta E_{1}{ }^{\text {ox }}$.

In summary, using ligands 5 and $\mathbf{8}$ we have exploited for the first time the chromophoric and redox properties of the

9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene system to provide efficient and controllable cation recognition within appended crown ether units. To enhance further these effects we suggest that redox species which undergo a multi-electron wave (e.g. certain dendrimers) ${ }^{12}$ should be targets for future transducers in redox-controlled molecular recognition.

We acknowledge funding for this work from EPSRC, Office of Naval Research, Grant \#: N00014-94-1-0592 (S. A. A.) and DOE Grant \#: DE-FG07-98ER62708 (S. A. A.), and thank Dr A. J. Moore for helpful discussions.

Notes and references

$\ddagger E_{1}{ }^{\mathrm{ox}}=$ anodic peak potential on the first wave of the oxidative scan.
\S Compounds $4,5,6$ and $\mathbf{8}$ gave spectroscopic and analytical data consistent with their structures. Selected data for 5: orange crystals, 67% yield, mp $216-218{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-cyclohexane); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.05(8 \mathrm{H}, \mathrm{m}), 3.66$ $(32 \mathrm{H}, \mathrm{m}), 7.33(4 \mathrm{H}, \mathrm{m})$ and $7.56(4 \mathrm{H}, \mathrm{m})$. For 8: orange crystals, 53% yield; $\mathrm{mp} 223-225{ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.94(6 \mathrm{H}, \mathrm{s}), 3.00(4 \mathrm{H}, \mathrm{m}), 3.58$ $(16 \mathrm{H}, \mathrm{m}), 7.29(4 \mathrm{H}, \mathrm{m}), 7.52(2 \mathrm{H}, \mathrm{m})$ and $7.68(12 \mathrm{H}, \mathrm{m})$.
If Diffraction data were measured on a SMART 1K CCD area detector (graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation, $\lambda=0.71073 \AA$). Structures were solved by direct methods and refined against F^{2} of all data, using SHELXL97 (G. M. Sheldrick, University of Göttingen, 1997). Crystal data for 6: $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}_{4}, M=560.7, T=150 \mathrm{~K}$, orthorhombic, $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=7.600(1), b=18.395(1), c=18.566(4) \AA, U=2596(1) \AA^{3}, Z=$ $4, D_{\mathrm{c}}=1.435 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.40 \mathrm{~mm}^{-1}, 10781$ reflections (4219 unique, $R_{\text {int }}=0.037$) with $2 \theta=52.7^{\circ}, 418$ variables, $R=0.038$ [3920 data, $I>$ $2 \sigma(I)], w R\left(F^{2}\right)=0.083, \Delta \rho$ max. $/ \mathrm{min} .=0.28,-0.21 \mathrm{e}^{\AA-3}$. The absolute structure was determined from anomalous X-ray scattering: Flack parameter 0.07(8). For 8: $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~S}_{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=759.9, T=120 \mathrm{~K}$, triclinic, $P \overline{1}($ No. 2) $, a=11.891(2), b=12.546(1), c=12.691(2) \AA, \alpha=104.93(1)$, $\beta=97.02(1), \gamma=106.60(1)^{\circ}, U=1713(1) \AA^{3}, Z=2, D_{\mathrm{c}}=1.473 \mathrm{~g} \mathrm{~cm}^{-3}$, 9437 reflections (7080 unique, $R_{\text {int }}=0.025$) with $2 \theta=55^{\circ}, 551$ variables, $R=0.037$ [6205 data, $I>2 \sigma(I)$], $w R\left(F^{2}\right)=0.089, \Delta \rho$ max. $/ \mathrm{min} .=0.43$, -0.29 e \AA^{-3}. CCDC 182/1511. See http://www.rsc.org/suppdata/ cc/a9/a908716h/for crystallographic data in .cif format.
1 G. W. Gokel, Chem. Soc. Rev., 1992, 21, 39; P. L. Boulas, M. GomezKaifer and L. Echegoyen, Angew. Chem., Int. Ed., 1998, 37, 216; A. E. Kaifer, Acc. Chem. Res., 1999, 32, 62.
2 Crown substituted conjugated polymers (e.g. polythiophenes) have also been widely studied in this context. Review: L. M. Goldenberg, M. R. Bryce and M. C. Petty, J. Mater. Chem., 1999, 9, 1957.
3 J. C. Medina, T. T. Goodnow, S. Bott, J. L. Atwood, A. E. Kaifer and G. W. Gokel, J. Chem. Soc., Chem. Commun., 1991, 290; P. D. Beer, Acc. Chem. Res., 1998, 31, 71.
4 M. L. H. Green, W. B. Heuer and G. C. Saunders, J. Chem. Soc., Dalton Trans., 1990, 3789.
5 F. Van Veggel, M. Bos, S. Harkema, H. van de Bovenkamp, H. Reedijk and D. Reinhoudt, J. Org. Chem., 1991, 56, 225.
6 (a) T. K. Hansen, T. Jørgensen, P. C. Stein and J. Becher, J. Org. Chem., 1992, 57, 6404; (b) R. Dieing, V. Morrison, A. J. Moore, L. M. Goldenberg, M. R. Bryce, J. M. Raoul, M. C. Petty, J. Garín, M. Saviron, I. K. Lednev, R. E. Hester and J. N. Moore, J. Chem. Soc., Perkin Trans. 2, 1996, 1587; (c) A. J. Moore, L. M. Goldenberg, M. R. Bryce, M. C. Petty, A. P. Monkman, C. Marenco, J. Yarwood, M. J. Joyce and S. N. Port, Adv. Mater., 1998, 10, 395; (d) F. Le Derf, M. Marari, N. Mercier, E. Levillain, P. Richomme, J. Becher, J. Garín, J. Orduna, A. Gorgues and M. Sallé, Chem. Commun., 1999, 1417; (e) H. Liu, S. Liu and L. Echegoyen, Chem. Commun., 1999, 1493.
7 (a) M. R. Bryce, A. J. Moore, M. Hasan, G. J. Ashwell, A. T. Fraser, W. Clegg, M. B. Hursthouse and A. I. Karaulov, Angew. Chem., Int. Ed. Engl., 1990, 29, 1450; (b) N. Martín, I. Pérez, L. Sánchez and C. Seoane, J. Org. Chem., 1997, 62, 5690; (c) Y. Yamashita and M. Tomura, J. Mater. Chem., 1998, 8, 1933; (d) C. Boulle, O. Desmars, N. Gautier, P. Hudhomme, M. Cariou and A. Gorgues, Chem. Commun., 1998, 2197.

8 (a) A. J. Moore and M. R. Bryce, J. Chem. Soc., Perkin Trans. 1, 1991, 157; (b) M. R. Bryce, M. A. Coffin, M. B. Hursthouse, A. I. Karaulov, K. Müllen and H. Scheich, Tetrahedron Lett., 1991, 32, 6029; (c) N. Martín, L. Sánchez, C. Seoane, E. Ortí, P. M. Viruela and R. Viruela, J. Org. Chem., 1998, 63, 1268.

9 Reagent 4 was prepared from the corresponding 1,3-dithiole-2-thione derivative [ref. $6(a)$] by the same route used for analogues [ref. 8(a)].
10 K. Akiba, K. Ishikawa and N. Inamoto, Bull. Chem. Soc. Jpn., 1978, 51, 2674.

11 R. M. Izatt, K. Pawlak and J. Bradshaw, Chem. Rev., 1991, 91, 1721.
12 W. Devonport, M. R. Bryce, G. J. Marshallsay, A. J. Moore and L. M. Goldenberg, J. Mater. Chem., 1998, 8, 1361 and references therein.

Communication a908716h

